Logarithmic Hölder continuous mappings and Beltrami equation
نویسندگان
چکیده
The paper is devoted to the study of mappings satisfying inverse Poletsky inequality. We local behavior these mappings. are most interested in case when corresponding majorant integrable on some set spheres positive linear measure. Our main result a logarithmic Hölder continuity such at inner points. As corollary, we have established existence continuous ACL-solution Beltrami equation, which continuous.
منابع مشابه
Hölder Continuity for Optimal Multivalued Mappings
Gangbo and McCann showed that optimal transportation between hypersurfaces generally leads to multivalued optimal maps – bivalent when the target surface is strictly convex. In this paper we quantify Hölder continuity of the bivalent map optimizing average distance squared between arbitrary measures supported on Euclidean spheres.
متن کاملCovariantising the Beltrami equation in W-gravity
Recently, certain higher dimensional complex manifolds were obtained in [1] by associating a higher dimensional uniformisation to the generalised Teichmüller spaces of Hitchin. The extra dimensions are provided by the “times” of the generalised KdV hierarchy. In this paper, we complete the proof that these manifolds provide the analog of superspace for W-gravity and that Wsymmetry linearises on...
متن کاملNumerical Solution of the Beltrami Equation
Abstract. An effective algorithm is presented for solving the Beltrami equation ∂f = μ ∂f in a planar disk. The algorithm involves no evaluation of singular integrals. The strategy, working in concentric rings, is to construct a piecewise linear μ-conformal mapping and then correct the image using a known algorithm for conformal mappings. Numerical examples are provided and the computational co...
متن کاملGenerating Continuous Mappings with Lipschitz Mappings
If X is a metric space then CX and LX denote the semigroups of continuous and Lipschitz mappings, respectively, from X to itself. The relative rank of CX modulo LX is the least cardinality of any set U \LX where U generates CX . For a large class of separable metric spaces X we prove that the relative rank of CX modulo LX is uncountable. When X is the Baire space NN, this rank is א1. A large pa...
متن کاملBeltrami equation and τ - function for dispersionless hierarchies
It is proved that the action for nonlinear Beltrami equation (quasi-classical ¯ ∂-problem) evaluated on its solution gives a τ-function for dis-persionless KP hierarchy. Infinitesimal transformations of τ-function corresponding to variations of ¯ ∂-data are found. Determinant equations for the function generating these transformations are derived. They represent a dispersionless analogue of sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2021
ISSN: ['1664-2368', '1664-235X']
DOI: https://doi.org/10.1007/s13324-021-00573-6